Primary tabs

Texas A&M

The Electric Grid Test Case Repository is hosted by Prof. Thomas Overbye , Department of Electrical and Computer Engineering in the College of Engineering at Texas A&M University with support of ARPA-E's GRID DATA program.

Synthetic electric grid cases are a representation of power grids with a detailed modeling of the power system dynamics and protections. Works [1] – [3] present a methodology to create entirely fictitious synthetic power system networks that can capture structural and functional characteristics of actual power grids. Synthetic network base cases are extended with generator cost data and dynamic models for energy economic and transient stability studies in works [4] and [5], respectively.

Synthetic networks have no relation to the actual electric grid in their geographic location, thus they contain no confidential information and pose no security concern. Researchers can freely use synthetic power grid to test and validate new tools and techniques as on actual power grid.

To cite the algorithms used to create these synthetic cases, please use [1]. If you are using synthetic generator cost models, please also cite [4]. If you are using synthetic generator dynamic models, please also cite [5].

[1] A. B. Birchfield; T. Xu; K. M. Gegner; K. S. Shetye; T. J. Overbye, “Grid Structural Characteristics as Validation Criteria for Synthetic Networks,” to appear in IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017.

[2] A. B. Birchfield; K. M. Gegner; T. Xu; K. S. Shetye; T. J. Overbye, “Statistical Considerations in the Creation of Realistic Synthetic PowerGrids for Geomagnetic Disturbance Studies,” in IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1502-1510, March 2017.

[3] K. M. Gegner; A. B. Birchfield; T. Xu; K. S. Shetye; T. J. Overbye, “A methodology for the creation of geographically realistic synthetic powerflow models,” 2016 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, 2016, pp. 1-6.

[4] T. Xu; A. B. Birchfield; K. M. Gegner; K. S. Shetye; T. J. Overbye, “Application of Large-Scale Synthetic Power System Models for Energy Economic Studies,” 2017 50th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, 2017.

[5] T. Xu; A. B. Birchfield; K. S. Shetye; T. J. Overbye,“Creation of synthetic electric grid models for transient stability studies,” accepted by 2017 IREP Symposium Bulk Power System Dynamics and Control, Espinho, Portugal, 2017.

Electric Grid Test Case Repository